64 research outputs found

    HRF estimation improves sensitivity of fMRI encoding and decoding models

    Get PDF
    Extracting activation patterns from functional Magnetic Resonance Images (fMRI) datasets remains challenging in rapid-event designs due to the inherent delay of blood oxygen level-dependent (BOLD) signal. The general linear model (GLM) allows to estimate the activation from a design matrix and a fixed hemodynamic response function (HRF). However, the HRF is known to vary substantially between subjects and brain regions. In this paper, we propose a model for jointly estimating the hemodynamic response function (HRF) and the activation patterns via a low-rank representation of task effects.This model is based on the linearity assumption behind the GLM and can be computed using standard gradient-based solvers. We use the activation patterns computed by our model as input data for encoding and decoding studies and report performance improvement in both settings.Comment: 3nd International Workshop on Pattern Recognition in NeuroImaging (2013

    FAASTA: A fast solver for total-variation regularization of ill-conditioned problems with application to brain imaging

    Get PDF
    The total variation (TV) penalty, as many other analysis-sparsity problems, does not lead to separable factors or a proximal operatorwith a closed-form expression, such as soft thresholding for the _1\ell\_1 penalty. As a result, in a variational formulation of an inverse problem or statisticallearning estimation, it leads to challenging non-smooth optimization problemsthat are often solved with elaborate single-step first-order methods. When thedata-fit term arises from empirical measurements, as in brain imaging, it isoften very ill-conditioned and without simple structure. In this situation, in proximal splitting methods, the computation cost of thegradient step can easily dominate each iteration. Thus it is beneficialto minimize the number of gradient steps.We present fAASTA, a variant of FISTA, that relies on an internal solver forthe TV proximal operator, and refines its tolerance to balance computationalcost of the gradient and the proximal steps. We give benchmarks andillustrations on "brain decoding": recovering brain maps from noisymeasurements to predict observed behavior. The algorithm as well as theempirical study of convergence speed are valuable for any non-exact proximaloperator, in particular analysis-sparsity problems

    Second order scattering descriptors predict fMRI activity due to visual textures

    Get PDF
    Second layer scattering descriptors are known to provide good classification performance on natural quasi-stationary processes such as visual textures due to their sensitivity to higher order moments and continuity with respect to small deformations. In a functional Magnetic Resonance Imaging (fMRI) experiment we present visual textures to subjects and evaluate the predictive power of these descriptors with respect to the predictive power of simple contour energy - the first scattering layer. We are able to conclude not only that invariant second layer scattering coefficients better encode voxel activity, but also that well predicted voxels need not necessarily lie in known retinotopic regions.Comment: 3nd International Workshop on Pattern Recognition in NeuroImaging (2013

    Statistical Component Separation for Targeted Signal Recovery in Noisy Mixtures

    Full text link
    Separating signals from an additive mixture may be an unnecessarily hard problem when one is only interested in specific properties of a given signal. In this work, we tackle simpler "statistical component separation" problems that focus on recovering a predefined set of statistical descriptors of a target signal from a noisy mixture. Assuming access to samples of the noise process, we investigate a method devised to match the statistics of the solution candidate corrupted by noise samples with those of the observed mixture. We first analyze the behavior of this method using simple examples with analytically tractable calculations. Then, we apply it in an image denoising context employing 1) wavelet-based descriptors, 2) ConvNet-based descriptors on astrophysics and ImageNet data. In the case of 1), we show that our method better recovers the descriptors of the target data than a standard denoising method in most situations. Additionally, despite not constructed for this purpose, it performs surprisingly well in terms of peak signal-to-noise ratio on full signal reconstruction. In comparison, representation 2) appears less suitable for image denoising. Finally, we extend this method by introducing a diffusive stepwise algorithm which gives a new perspective to the initial method and leads to promising results for image denoising under specific circumstances.Comment: 11+12 pages, 5+5 figures, code: https://github.com/bregaldo/stat_comp_se

    Total Variation meets Sparsity: statistical learning with segmenting penalties

    Get PDF
    International audiencePrediction from medical images is a valuable aid to diagnosis. For instance, anatomical MR images can reveal certain disease conditions, while their functional counterparts can predict neuropsychi-atric phenotypes. However, a physician will not rely on predictions by black-box models: understanding the anatomical or functional features that underpin decision is critical. Generally, the weight vectors of clas-sifiers are not easily amenable to such an examination: Often there is no apparent structure. Indeed, this is not only a prediction task, but also an inverse problem that calls for adequate regularization. We address this challenge by introducing a convex region-selecting penalty. Our penalty combines total-variation regularization, enforcing spatial conti-guity, and 1 regularization, enforcing sparsity, into one group: Voxels are either active with non-zero spatial derivative or zero with inactive spatial derivative. This leads to segmenting contiguous spatial regions (inside which the signal can vary freely) against a background of zeros. Such segmentation of medical images in a target-informed manner is an important analysis tool. On several prediction problems from brain MRI, the penalty shows good segmentation. Given the size of medical images, computational efficiency is key. Keeping this in mind, we contribute an efficient optimization scheme that brings significant computational gains

    Seeing it all: Convolutional network layers map the function of the human visual system

    Get PDF
    International audienceConvolutional networks used for computer vision represent candidate models for the computations performed in mammalian visual systems. We use them as a detailed model of human brain activity during the viewing of natural images by constructing predictive models based on their different layers and BOLD fMRI activations. Analyzing the predictive performance across layers yields characteristic fingerprints for each visual brain region: early visual areas are better described by lower level convolutional net layers and later visual areas by higher level net layers, exhibiting a progression across ventral and dorsal streams. Our predictive model generalizes beyond brain responses to natural images. We illustrate this on two experiments, namely retinotopy and face-place oppositions, by synthesizing brain activity and performing classical brain mapping upon it. The synthesis recovers the activations observed in the corresponding fMRI studies, showing that this deep encoding model captures representations of brain function that are universal across experimental paradigms

    SpaceNet: Multivariate brain decoding and segmentation

    Get PDF
    International audienceWe present SpaceNet, a multivariate method for brain decoding and segmentation. SpaceNet uses priors like TV (Total Variation). SpaceNet uses priors like TV (Total Variation) [Michel et al. 2011], TV-L1 [Baldassarre et al. 2012, Gramfort et al. 2013], and GraphNet / Smooth-Lasso [Hebiri et al. 2011, Grosenick et al. 2013] to regularize / penalize classification and regression problems in brain imaging. The result are brain maps which are both sparse (i.e regression coefficients are zero everywhere, except at predictive voxels) and structured (blobby). The superiority of such priors over methods without structured priors like the Lasso, SVM, ANOVA, Ridge, etc. for yielding more interpretable maps and improved classification / prediction scores is now well-established [Baldassarre et al. 2012, Gramfort et al. 2013, Grosenick et al. 2013]. In addition, such priors lead to state-of-the-art methods for extracting brain atlases [Abraham et al. 2013]

    Machine Learning for Neuroimaging with Scikit-Learn

    Get PDF
    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.Comment: Frontiers in neuroscience, Frontiers Research Foundation, 2013, pp.1
    corecore